M1.(a) (i) $\quad X$ must have a negative charge $\sqrt{ }$
to conserve charge \checkmark
second mark dependent on first i.e. conserve charge alone scores nothing
can gain second mark by showing balanced equation
(ii) X must be a baryon \checkmark
to conserve baryon number \checkmark
here two marks are independent i.e. conserve baryon number alone scores 1 mark can gain second mark by showing balanced equation
(iii) $\mathrm{K}: \mathrm{S}$ ㄱ OR strange anti-up
K^{+}: u - s OR up anti-strange \checkmark
K^{0} : $\mathrm{d} \bar{s}$ OR $\mathrm{S}^{\overline{\mathrm{d}}}$ OR down anti-strange OR strange anti-down \checkmark in each case the symbols or words can be in either order must be a bar over anti - quark can be upper case letters e.g. U
(iv) (strangeness on LHS is -1) strangeness on RHS without X is +2 / strangeness of X is -3 thus sss
OR
strangeness on RHS without X is +2 / strangeness of X is $-1 \checkmark$ thus sdd $\checkmark \checkmark$
correct strangeness without X on RHS is minimum working needed for first mark next two marks awarded for correct quark structure
(ii) $0 /$ zero / nothing
(iii) K-/ negative kaon / $\overline{\text { us }} \sigma$
(b) (i)

classification	K^{+}	v_{μ}	μ^{+}
lepton	\times	\checkmark	\checkmark
charged particle	\checkmark	\times	\checkmark
hadron	\checkmark	\times	\times
meson	\checkmark	\times	\times
1 mark for each correct row			

(ii) conserved: baryon number OR lepton number \checkmark not conserved: strangeness / kinetic energy

Mass in either loses mark
(ii) must be neutral / no charge / 0 charge to obey charge conservation OR cannot be baryon to obey conservation of baryon number OR

cannot be lepton to obey conservation of lepton number Can show by using equation and appropriate quantum numbers

M3.(a) Photon
(right-hand box) TO for listing Must state name

Weak (nuclear) / weak interaction / weak nuclear interaction / weak force
(left-hand box) TO for listing
(b) Charge / (electric) charge

B1
TO for listing any other physical quantity Must be word; do not accept symbol
(c) Higgs (boson) / Higgs (particle) / Higgs (boson particle)

Not graviton
Accept Higg / Higs / Hig
B1
TO for listing

M4.(a) pair production
(b) (energy $=2 \times$ rest mass energy)
energy $=2 \times 0.510999=1.021998(\mathrm{MeV})$ energy $=1.021998 \times 1.60 \times 10^{-13}=1.64 \times 10^{-13} \mathrm{~J} \checkmark$

Page 4

(3 sig figs \checkmark)

If miss out 2 factor can get CE
Can use $E=2 m c^{2}$
First mark for full substitution and second mark for answer
(c) kinetic energy (of electron and positron)

KE of photon gets zero

M5. (a)

particle	quark structure	charge	strangeness	baryon number
proton \checkmark	uud	$+1 \checkmark$	0	$1 \checkmark$
sigma $^{+}$	uus	+1	$-1 \checkmark$	$1 \checkmark$
$\pi^{+} \checkmark$	ud	$+1 \checkmark$	0	0

(b) (i) examples:
proton, antiquarks
(ii) consists of 3 antiquarks \checkmark
(iii) same (rest) mass (energy) \checkmark
difference eg baryon number/charge \checkmark

M6. (a) photon interacts with (orbital) electron/nucleus/atom energy of photon used to create particle antiparticle pair to conserve momentum photon needs to interact with interacting particle
(b) energy of photon depends on frequency if energy/frequency is below a certain value there is not enough energy to provide mass/rest energy of particles
(c) any two $\checkmark \checkmark$
eg charge
lepton number
baryon number
strangeness

